pubs.acs.org/joc

Three-Dimensional Structural Control of Diastereomeric Leu-Leu-Aib-Leu-Leu-Aib Sequences in the Solid State

Yosuke Demizu,^{*,†} Mitsunobu Doi,[‡] Yukiko Sato,[†] Masakazu Tanaka,[§] Haruhiro Okuda,[†] and Masaaki Kurihara^{*,†}

[†]Division of Organic Chemistry, National Institute of Health Sciences, Tokyo 158-8501, Japan, [‡]Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan, and [§]Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

demizu@nihs.go.jp; masaaki@nihs.go.jp

Received May 23, 2010

Three diastereomeric -Leu-Leu-Aib-Leu-Leu-Aib- peptides composed of the same numbers of L-Leu, D-Leu, and Aib residues were synthesized: Boc-L-Leu-L-Leu-Aib-D-Leu-Aib-OMe (1), Boc-L-Leu-D-Leu-Aib-L-Leu-D-Leu-Aib-OMe (2), and Boc-L-Leu-D-Leu-Aib-D-Leu-Leu-Aib-OMe (3). The crystals of the three peptides were characterized by X-ray crystallographic analysis as follows: (1) orthorhombic, $P2_12_12_1$, a = 21.383 Å, b = 11.070 Å, c = 19.560 Å, Z = 4, $R_1 = 0.0527$, and $R_w = 0.1562$; (2) monoclinic, $P2_1$, a = 9.391 Å, b = 21.278 Å, c = 11.662 Å, $\beta = 99.125$, Z = 2, $R_1 = 0.0507$, and $R_w = 0.1447$; and (3) triclinic, P1, a = 12.545 Å, b = 14.913 Å, c = 15.330 Å, $\alpha = 77.622$, $\beta = 66.601$, $\gamma = 78.839$, Z = 2, $R_1 = 0.0775$, and $R_w = 0.1971$. The three diastereomeric peptides, 1, 2, and 3, showed unique conformations. That is to say, 1 was folded into a left-handed (M) 3_{10} -helical structure, 2 was folded into a distorted β -hairpin nucleated by a type II' β -turn-like structure, and 3 was folded into an S-shape turn structure based on two type II/III β -turns.

Introduction

The *de novo* design of peptides that fold into well-defined secondary structures is crucially important in a wide variety of fields such as organic chemistry and biological and material sciences. Approaches to controlling the conformations of peptides have been studied by several groups.¹ As templates for stabilizing the secondary structures of peptides, α , α -disubstituted α -amino acids have been widely used,² and α -aminoisobutyric acid (Aib) has been found to be particularly useful as a helical promoter.³ We have recently reported that the placement of Aib residues in a L-leucine-based hexapeptide (L-Leu-L-Leu-Aib)-L-Leu-L-Leu-Aib) stabilized its right-handed (*P*) 3₁₀-helical structure.⁴

5234 J. Org. Chem. **2010**, 75, 5234–5239

Incidentally, the placement of L-amino acids in a helical sequence containing enantiomeric D-amino acids generally destabilizes the helical structure.⁵ However, the accurate design of hybrid peptides with an effective combination of L- and D-amino acids is useful for constructing novel specific conformations.⁶ Therefore, we speculated that new secondary structures could be built by appropriate design of Leu-based

 ^{(1) (}a) Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C.; Broxterman,
 Q. B.; Kaptein, B. J. Inclusion Phenom. Macrocyclic Chem. 2005, 51, 121–
 136. (b) Kaul, R.; Balaram, P. Bioorg. Med. Chem. 1999, 7, 105–117. (c)
 Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180. (d) Wysong, C. L.;
 Yokum, T. S.; MacLaughlin, M. L.; Hammer, R. P. CHEMTECH 1997, 27, 26–33.

^{(2) (}a) Crisma, M.; Formaggio, F.; Moretto, A.; Toniolo, C. Biopolymers (Pept. Sci.) 2006, 84, 3–12. (b) Dehner, A.; Planker, E.; Gemmecker, G.; Broxterman, Q. B.; Bisson, W.; Formaggio, F.; Crisma, M.; Toniolo, C.; Kessler, H. J. Am. Chem. Soc. 2001, 123, 6678–6686. (c) Jaun, B.; Tanaka, M.; Seiler, P.; Kuhnle, F. N. K.; Braun, C.; Seebach, D. Liebigs Ann. [Recueil 1997, 1697–1710. (d) Nagano, N.; Tanaka, M.; Doi, M.; Demizu, Y.; Kurihara, M.; Suemune, H. Org. Lett. 2009, 11, 1135–1137. (e) Demizu, Y.; Shiigi, H.; Mori, H.; Matsumoto, K.; Onomura, O. Tetrahedron: Asymmetry 2008, 19, 2659–2665. (f) Tanaka, M.; Anan, K.; Demizu, Y.; Kurihara, M.; Doi, M.; Suemune, H. J. Am. Chem. Soc. 2005, 127, 11570–11571. (g) Tanaka, M.; Demizu, Y.; Doi, M.; Kurihara, M.; Suemune, H. Angew. Chem., Int. Ed. 2004, 43, 5360–5363. (h) Tanaka, M.; Nishimura, S.; Oba, M.; Demizu, Y.; Kurihara, M.; Suemune, H. Chem.-Eur. J. 2003, 9, 3082–3090. (i) Imawaka, N.; Tanaka, M.; Suemune, H. Helv. Chim. Acta 2000, 83, 2823–2835.

Demizu et al.

FIGURE 1. Design of peptides 1, 2, and 3.

hexapeptides with a primary structure of Leu-Leu-Aib-Leu-Leu-Aib containing two L-Leu, two D-Leu, and two Aib residues in various combinations (Figure 1). Therefore, we designed and synthesized three diastereomeric peptides, Boc-L-Leu-L-Leu-Aib-D-Leu-D-Leu-Aib-OMe (1), Boc-L-Leu-D-Leu-Aib-D-Leu-Aib-OMe (2), and Boc-L-Leu-D-Leu-Aib-D-Leu-Aib-OMe (3), and studied their preferred conformations in the crystalline state (Figure 2).

Results and Discussion

Synthesis of Peptides. Peptides 1, 2, and 3 were synthesized by conventional solution-phase methods according to a fragment condensation strategy using *O*-benzotriazole-*N*, N,N',N'-tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole (HOBT) as coupling reagents.⁴

Crystal-State Conformational Analysis. Peptides 1, 2, and 3 formed good crystals for X-ray crystallographic analysis by slow evaporation of the solvents (MeCN/MeOH) at room temperature. The crystal and diffraction parameters of 1, 2, and 3 are summarized in Table 1. Data collection was performed on Bruker AXS SMART APEX imaging plate diffractometers using graphite-monochromated Mo K α radiation. All crystals remained stable during the X-ray data collection. The structures of the peptides were solved using

FIGURE 2. Chemical structures of the three diastereomeric peptides 1, 2, and 3.

the SHELXS 97 direct method⁷ and expanded by the Fourier technique.⁸ All non-H-atoms were given anisotropic thermal parameters, some H-atoms were refined isotropically, and the remaining H-atoms were placed at the calculated positions. The final cycle of full-matrix least-squares refinement of **1** gave an R_1 factor of 0.0527 on the basis of 5633 ($I > 2\sigma(I)$) reflections and an R_w factor of 0.1562 for all data. The R_1 factor of **2** was 0.0507 on the basis of 5187 ($I > 2\sigma(I)$) reflections, and the R_w factor was 0.1447 for all data. The R_1 factor of **3** was 0.0775 based on 9915 ($I > 2\sigma(I)$) reflections, and the R_w factor was 0.1971 for all data.⁹ The relevant backbone and side-chain torsion angles and the intra- and intermolecular hydrogen-bond parameters are listed in Tables 2 and 3.

X-ray analysis of Boc-L-Leu-L-Leu-Aib-D-Leu-D-Leu-Aib-OMe (1) showed a left-handed (M) 3₁₀-helical structure with flipping of the N-terminal L-Leu(1) and C-terminal Aib(6) residues, which was solved with the space group $P2_12_12_1$ (Figure 3). The mean values of the ϕ and ψ torsion angles of the residues [L-Leu(2) to D-Leu(5)] were +57.3° and +31.2°, respectively, which are close to those of an ideal left-handed (M) 3₁₀-helical structure (+60° and +30°). The flipped torsion angles (ϕ and ψ) at the N- and C-termini were negative, i.e., -101.9° and -24.7° for L-Leu(1), and -48.7° and -49.1° for Aib(6), respectively. Three consecutive hydrogen bonds of the $i \leftarrow i + 3$ type were observed between H–N(4) and C(1)=O(1) [N(4)···O(1) = 2.97 Å;

^{(3) (}a) Ousaka, N.; Inai, Y.; Kuroda, R. J. Am. Chem. Soc. 2008, 130, 12266–12267. (b) Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C.; Broxterman, Q. B.; Kaptein, B. Biopolymers (Pept. Sci.) 2004, 76, 162–176. (c) Karle, I. L. Biopolymers (Pept. Sci.) 2001, 60, 351–365. (d) Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev. 2001, 101, 3131–3152. (e) Demizu, Y.; Yamagata, N.; Sato, Y.; Doi, M.; Tanaka, M.; Okuda, H.; Kurihara, M. J. Pept. Sci. 2010, 16, 153–158. (f) Oba, M.; Demizu, Y.; Yamagata, N.; Sato, Y.; Doi, M.; Tanaka, M.; Suemune, H.; Okuda, H.; Kurihara, M. Tetrahedron 2010, 66, 2293–2296. (g) Oba, M.; Tanaka, M.; Kurihara, M.; Suemune, H. Helv. Chim. Acta 2002, 85, 3197–3218. (h) Tanaka, M.; Oba, M.; Imawaka, N.; Tanaka, Y.; Kurihara, M.; Suemune, H. Helv. Chim. Acta 2002, 85, 3197–3218. (h) Tanaka, M.; Oba, M.; Tanawa, M.; Suemune, H. Helv. Chim. Acta 2002, 85, 3197–3218. (h)

⁽⁴⁾ Demizu, Y.; Tanaka, M.; Nagano, M.; Kurihara, M.; Doi, M.; Maruyama, T.; Suemune, H. *Chem. Pharm. Bull.* **2007**, *55*, 840–842.

^{(5) (}a) Krause, E.; Bienert, M.; Schmieder, P.; Wenschuh, H. J. Am. Chem. Soc. 2000, 122, 4865–4870. (b) Fairman, R.; Anthony-Cahill, S. J.; DeGrado, W. F. J. Am. Chem. Soc. 1992, 114, 5458–5459.

^{(6) (}a) Karle, I. L.; Hosahudya, G. N.; Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13946–13951. (b) Dhanasekaran, M.; Fabiola, F.; Pattabhi, V.; Durani, S. J. Am. Chem. Soc. 1999, 121, 5575–5576. (c) Fabiola, F.; Pattabhi, V.; Rawale, S.; Raju, E. B.; Durani, S. Chem. Commun. 1997, 1379–1380. (d) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 6975–6985. (e) Imperialli, B.; Fisher, S. L.; Moats, R. A.; Prins, T. J. J. Am. Chem. Soc. 1992, 114, 3182–3188. (f) Blasio, B. D.; Benedetti, E.; Pavone, V.; Pedone, C.; Spiniello, O.; Lorenzi, G. P. Biopolymers 1989, 28, 193–201.

⁽⁷⁾ Sheldrick, G. M. *Program for Crystal Structure Refinement (SHELXL 97)*; University of Göttingen: Göttingen, 1997.

⁽⁸⁾ Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Gelder, R. D.; Israel, R.; Smits, J. M. M. *The DIRDIF-99 program system*, Technical Report of the Crystallography Laboratory, University of Nijmegen: The Netherlands, 1994.

⁽⁹⁾ CCDC-768211, 768212, and 768213 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK. Fax (+44) 1223-336-033 or deposit@ccdc.cam.ac.uk).

TABLE 1. Crystal and Diffraction Parameters of Peptides 1, 2, and 3

	1	2	3
formula	C ₃₈ H ₇₀ O ₉ N ₆	C ₃₈ H ₇₀ O ₉ N ₆	$C_{38}H_{70}O_9N_6 \cdot C_2H_3N$
$M_{ m r}$	755.00	755.00	796.05
crystal dimensions [mm]	$0.40 \times 0.40 \times 0.25$	$0.50 \times 0.25 \times 0.20$	0.50 imes 0.35 imes 0.08
T[K]	240	240	240
crystal system	orthorhombic	monoclinic	triclinic
a [Å]	21.383	9.391	12.545
b [Å]	11.070	21.278	14.913
<i>c</i> [Å]	19.560	11.662	15.330
a [deg]	90	99.125	77.622
β [deg]	90	90	66.601
γ [deg]	90	90	78.839
$V[Å^3]$	4629.9	2300.9	2552.1
space group	$P2_{1}2_{1}2_{1}$	$P2_1$	<i>P</i> 1
	4	2	2
$D_{\text{calc}} [\text{g/cm}^3]$	1.083	1.090	1.036
μ (Mo K α) [cm ⁻¹]	0.77	0.77	0.73
no. of observations	$5633 (I > 2\sigma(I))$	$5187 (I > 2\sigma(I))$	9915 $(I > 2\sigma(I))$
no. of variables	478	478	1011
R_1, R_w	0.0527, 0.1562	0.0507, 0.1447	0.0775, 0.1971
solvent	MeCN/MeOH	MeCN/MeOH	MeCN/MeOH

TABLE 2.	Selected Torsion	Angles [deg] fo	r Peptides 1, 2	2, and 3
----------	------------------	-----------------	-----------------	----------

				3
torsion angle	1	2	molecule A	molecule B
ω_0	-173.7	177.4	-176.4	-176.7
ϕ_1	-101.9	-87.6	-51.4	-59.4
ψ_1	-24.7	69.8	129.9	125.9
ω_1	177.7	-175.9	167.5	172.1
ϕ_2	57.8	45.8	86.2	86.8
ψ_2	35.1	-133.1	8.3	7.6
ω_2	-179.8	-174.1	-165.7	-160.8
ϕ_3	51.7	-63.0	-51.6	-56.6
ψ_3	33.1	-23.6	-42.9	-36.5
ω_3	176.0	-178.1	-171.4	-175.2
ϕ_4	63.6	-73.1	-61.2	-62.1
ψ_4	19.5	-25.2	-16.1	-15.6
ω_4	173.5	-178.6	179.6	178.4
ϕ_5	56.2	78.9	-87.8	-85.4
ψ_5	37.1	-118.6	-20.1	-18.2
ω_5	-168.7	178.6	-175.1	-172.2
ϕ_6	-48.7	52.3	46.6	53.7
ψ_6	-49.1	41.4	-140.4	-143.6
ω_6	-179.3	179.0	-176.9	-179.6
χ1	-64.2	-68.8	-175.0	-178.0
χ2	-50.1	-177.2	60.4	63.1
χ4	62.5	-179.9	65.0	62.1
χ5	74.3	69.6	-51.8	-53.0

N-H····O 154.9°], H-N(5) and C(2)=O(2) [N(5)···O(2) = 2.95 Å; N-H···O 159.7°], and H-N(6) and C(3)=O(3) $[N(6)\cdots O(3) = 3.02 \text{ Å}; N-H\cdots O \ 132.0^{\circ}].$ The N-terminus was flipped away from the helix, thereby preventing the formation of the $N(3) \cdots O(O)$ hydrogen bonds usually observed in 3_{10} -helical peptides.¹⁰ In the packing mode, two intermolecular hydrogen bonds were observed between the H–N(1) donor and the C(4')=O(4') acceptor $[N(1)\cdots$ $O(4') = 2.84 \text{ Å}; \text{ N-H} \cdots \text{O} 141.4^{\circ}]$ of a symmetry-related molecule (x, -1 + y, z) and the H-N(2) donor and the C(5')=O(5') acceptor $[N(2)\cdots O(5') = 2.81 \text{ Å}; N-H\cdots O(5') = 2.81 \text{ Å}; N-H\cdots O(5') = 2.81 \text{ Å}; N-H\cdots O(5') = 0.81 \text$ 137.6°] of a symmetry-related molecule (x, -1 + y, z). The helical molecules were connected by two hydrogen bonds, forming chains with a head-to-tail alignment, as shown in Figure 4. The flipping of L-Leu(1) may occur because of repulsion of the side chains between L-Leu(1) and D-Leu(5')

TABLE 3.	Intra- and Intermolecular H-Bond Parameters for Peptides
1, 2, and 3^{a}	

donor D–H	acceptor A	distance D…A [Å]	angle D–H···A [deg]	symmetry operations
	Boc-L-L	eu-L-Leu-Aib	-D-Leu-D-Leu-	Aib-OMe (1)
N_4-H	O_1	2.97	154.9	<i>x</i> , <i>y</i> , <i>z</i>
N_5-H	O_2	2.95	159.7	x, y, z
N_6-H	O_3	3.02	132.0	<i>x</i> , <i>y</i> , <i>z</i>
N_1-H	$O_{4'}$	2.84	141.4	x, -1 + y, z
N_2-H	O _{5'}	2.81	137.6	x, -1 + y, z
Boc-L-Leu-D-Leu-Aib-L-Leu-D-Leu-Aib-OMe (2)				
N_1-H	O_5	2.83	173.3	<i>x</i> , <i>y</i> , <i>z</i>
N_4-H	O_1	2.93	138.9	<i>x</i> , <i>y</i> , <i>z</i>
N_5-H	O_2	3.23^{b}	154.7	<i>x</i> , <i>y</i> , <i>z</i>
N_3-H	$O_{6'}$	3.00	164.5	2 - x, $-1/2 + y$, $1 - z$
N_6-H	$O_{0'}$	3.02	167.8	-1 + x, y, z
Boc-L-Leu-D-Leu-Aib-D-Leu-L-Leu-Aib-OMe (3)				
		mo	lecule A	
N _{3A} -H	O_{0A}	3.25^{b}	133.4	<i>x</i> , <i>y</i> , <i>z</i>
N _{5A} -H	O_{2A}	2.98	164.9	<i>x</i> , <i>y</i> , <i>z</i>
N _{6A} -H	O_{3A}	2.98	157.3	<i>x</i> , <i>y</i> , <i>z</i>
$N_{1A}-H$	$O_{1B'}$	2.96	157.4	x, y, -1 + z
N _{2A} -H	$O_{5B'}$	2.95	167.6	x, -1 + y, -1 + z
N _{4A} -H	$O_{6B'}$	2.77	137.5	x, -1 + y, -1 + z
molecule B				
N _{3B} -H	O_{0B}	3.27^{b}	134.4	<i>x</i> , <i>y</i> , <i>z</i>
N _{5B} -H	O_{2B}	2.98	164.4	<i>x</i> , <i>y</i> , <i>z</i>
$N_{6B}-H$	O_{3B}	2.99	164.3	<i>x</i> , <i>y</i> , <i>z</i>
$N_{1B}-H$	$O_{4A^{\prime}}$	2.92	166.1	x, 1 + y, z
$N_{2B}-H$	$O_{5A^{\prime}}$	2.78	139.8	x, 1 + y, z

^{*a*}The numbering of the amino acid residues begins at the N-terminus of the peptide. ^{*b*}The distance $D \cdots A$ is quite long for a hydrogen bond.

FIGURE 3. X-ray diffraction structure of Boc-L-Leu-L-Leu-Aib-D-Leu-D-Leu-Aib-OMe (1).

⁽¹⁰⁾ Karle, I. L.; Prasad, S.; Balaram, P. J. Peptide Res. 2004, 63, 175-180.

FIGURE 4. Packing of 1 in the crystalline state. Intramolecular (blue) and intermolecular (red) hydrogen bonds are indicated as dashed lines.

FIGURE 5. X-ray diffraction structure of Boc-L-Leu-D-Leu-Aib-L-Leu-D-Leu-Aib-OMe (2).

in the packing mode when the torsion angles of L-Leu(1) are positive. Peptide 1 demonstrated only a left-handed screw sense in the crystalline state even though it contained the same number of L-Leu and D-Leu residues. It is not exactly clear why a left-handed screw sense was produced over a right-handed screw sense in this peptide. C-Terminal D-Leu chirality seems to exert more control over the torsion angles of the N-terminal direction than N-terminal L-Leu chirality, and a slightly energetically favorable conformer might be preferentially packed into the crystalline conformer.

On the other hand, the crystal structure of Boc-L-Leu-D-Leu-Aib-L-Leu-D-Leu-Aib-OMe (2), which was solved with the space group $P2_1$, was a distorted β -hairpin nucleated by a type II' β -turn-like structure (Figure 5). The β -turn was formed between D-Leu(2) and Aib(3), and the values of the ϕ and ψ torsion angles of the D-Leu(2) residue were +45.8° and -133.1° , respectively, and those of the Aib(3) residue were -63.0° and -23.6°, respectively [backbone torsion angles of ideal type II' β -turn: $\phi(i + 1) = 60^{\circ}, \psi(i + 1) =$ -120° , and $\phi(i+2) = +80^{\circ}$, $\psi(i+2) = 0^{\circ}$].¹¹ Two different types of intramolecular hydrogen bond were found, one hydrogen bond of the $i + 4 \leftarrow i$ type between H–N(1) and $C(5)=O(5) [N(1)\cdots O(5) = 2.83 \text{ Å}; N-H\cdots O 173.3^{\circ}]$ and another of the $i \leftarrow i + 3$ type between H–N(4) and C(1)=O(1) $[N(4) \cdots O(1) = 2.93 \text{ Å}; N-H \cdots O 138.9^{\circ}]$. Furthermore, one weak intramolecular hydrogen bond was observed between H-N(5) and C(2)=O(2) [N(5)···O(2) = 3.23 A; N-H···O 154.7°]. In the packing mode, two intermolecular hydrogen bonds were observed between the H-N(3) donor and the C(6')=O(6') acceptor $[N(3)\cdots O(6') = 3.00 \text{ Å}; N-H\cdots O(6') = 3.00 \text$ 164.5°] of a symmetry-related molecule (2-x, -1/2 + y, 1-z), and the H-N(6) donor and the C(0')=O(0') acceptor

[N(6)···O(0') = 3.02 Å; N–H···O 167.8°] of a symmetryrelated molecule (-1 + x, y, z) (Figure 6). This structure was formed by two processes, extension and bending of parts of the peptide backbone. That is to say, a combination of L-amino acid (*i*) and D-amino acid (*i* + 1) residues, L-Leu(1)-D-Leu(2) and L-Leu(4)-D-Leu(5), formed a semiextended conformations¹² and the Aib(3) residue acted as a bent scaffold to form a distorted β-hairpin structure.

The structure of Boc-L-Leu-D-Leu-Aib-D-Leu-L-Leu-Aib-OMe (3) was solved with the space group P1. Two crystallographically independent molecules, A and B, were found in the asymmetric unit of 3 together with an acetonitrile molecule. Molecules A and B were folded into different types of β -turn structures to form an S-shape turn (Figure 7).^{6c} The conformations of molecules A and B were well matched except for small differences in the conformations of their side chain, as shown by their superimposition in Figure 8. In the S-shape turn, a type II β -turn was found at the L-Leu(1A) and D-Leu(2A) residues ($\phi 1 = -51.4^{\circ}$, $\psi 1 = +129.9^{\circ}$, and $\phi 2 = +86.2^{\circ}, \ \psi 2 = +8.3^{\circ})$, and a type III β -turn (ideal backbone torsion angles, $\phi = -60^{\circ}, \ \psi = -30^{\circ})^{11}$ was demonstrated at the D-Leu(4A) and L-Leu(5A) ($\phi = -74.5^{\circ}, \psi =$ -18.1°), as shown in Figure 9. In molecule A, two consecutive hydrogen bonds of the $i \leftarrow i + 3$ type were observed between H–N(5A) and C(2A)=O(2A) $[N(5A)\cdots O(2A) =$ 2.98 Å; N-H···O 164.9°] and between H-N(6A) and C- $(3A) = O(3A) [N(6A) \cdots O(3A) = 2.98 \text{ Å}; N - H \cdots O 157.3^{\circ}].$ Furthermore, one weak intramolecular hydrogen bond was observed between H–N(3A) and C(0A)=O(0A) $[N(3A)\cdots$ $O(0A) = 3.25 \text{ Å}; \text{ N}-\text{H}\cdots\text{O} 133.4^{\circ}].$ Molecule **B** similarly contained two intramolecular hydrogen bonds between H-N(5B) and C(2B)=O(2B) [N(5B) \cdots O(2B) 2.98 Å; $N-H\cdots O$ 164.4°] and between H-N(6B) and C(3B)=O-(3B) $[N(6B) \cdots O(3B) 2.99 \text{ Å}; N-H \cdots O 164.3^{\circ}]$, and one weak intramolecular hydrogen bond between H-N(3B) and $C(0B) = O(0B) [N(3B) \cdots O(0B) = 3.27 \text{ Å}; N-H \cdots O 134.4^{\circ}].$ In the packing mode, five intermolecular hydrogen bonds were observed between the H-N(1A) donor and the C(1B')-=O(1B') acceptor $[N(1A)\cdots O(1B') = 2.96 \text{ Å}; N-H\cdots O$ 157.4°] of a symmetry-related molecule (x, y, -1+z), the H-N(2A) donor and the C(5B')=O(5B') acceptor $[N(2A)\cdots$ $O(5B') = 2.95 \text{ Å}; \text{ N}-\text{H}\cdots\text{O} 167.6^{\circ}$ of a symmetry-related molecule (x, -1 + y, -1 + z), the H-N(4A) donor and the C(6B')=O(6B') acceptor $[N(4A)\cdots O(6B') = 2.77 \text{ Å};$

⁽¹¹⁾ Robinson, J. A. Synlett 2000, 4, 429-441.

 ^{(12) (}a) Doi, M.; In, Y.; Ikuma, K.; Inoue, M.; Ishida, T. Acta Crystallogr. 1993, C49, 1530–1532.
 (b) Murali, R.; Lalitha, V.; Subramanian, E.; Parthasarathy, R. Int. J. Pept. Protein Res. 1986, 27, 160–164.

JOC Article

FIGURE 6. Packing of 2 in the crystalline state. Intramolecular (blue) and intermolecular (red) hydrogen bonds are indicated as dashed lines.

FIGURE 7. X-ray diffraction structure of Boc-L-Leu-D-Leu-Aib-D-Leu-L-Leu-Aib-OMe (3). The acetonitrile molecule has been omitted.

FIGURE 8. Overlay of the structures of molecules A (green) and B (blue).

FIGURE 9. S-Shape turn structure of 3 (molecule A).

N-H···O 137.5°] of a symmetry-related molecule (x, -1 + y, -1 + z), the H-N(1B) donor and the C(4A')=O(4A') acceptor [N(1B)···O(4A') = 2.92 Å; N-H···O 166.1°] of a symmetry-related molecule (x, 1 + y, z), and the H-N(2B) donor and the C(5A')=O(5A') acceptor [N(2B)···O(5A') = 2.78 Å; N-H···O 139.8°] of a symmetry-related molecule (x, 1 + y, z). Molecules **A** and **B** were alternately connected by five intermolecular hydrogen bonds, as shown in Figure 10. The S-shape turn structure was formed by the Aib(3) residue acting as a bent scaffold and the L-Leu(1)-D-Leu(2) and D-Leu(4)-L-Leu(5) sequences forming semiextended conformations.

Conclusion

We have synthesized the three diastereomeric -Leu-Leu-Aib-Leu-Aib- peptides Boc-L-Leu-L-Leu-Aib-D-Leu-D-

FIGURE 10. Packing of 3 (green, molecule A; blue, molecule B) in the crystalline state. Intermolecular (red) hydrogen bonds are indicated as dashed lines.

Leu-Aib-OMe (1), Boc-L-Leu-D-Leu-Aib-L-Leu-D-Leu-Aib-OMe (2), and Boc-L-Leu-D-Leu-Aib-D-Leu-L-Leu-Aib-OMe (3) and studied their preferred conformations by X-ray crystallographic analysis. The preferred conformation of 1 was a left-handed (*M*) 3₁₀-helical structure, that of 2 was a distorted β -hairpin nucleated by a type II' β -turn-like structure, and that of 3 was an S-shape turn structure nucleated by two type II/III β -turns. The appropriate incorporation of L-Leu(*i*)-L-Leu(*i* + 1), ⁴ D-Leu(*i*)-D-Leu(*i* + 1), L-Leu(*i*)-D-Leu(*i* + 1), and D-Leu(*i*)-L-Leu(*i* + 1) next to Aib residues produced novel secondary structures that have not previously been identified. These results are valuable for the design of peptides with well-defined secondary structures and may also be relevant for the *de novo* design of peptides/proteins.

Experimental Section

Synthesis of Peptides 1, 2, and 3. The synthesis of peptides 1, 2, and 3 was carried out according to the stepwise solutionphase method using HBTU and HOBT as coupling reagents. All compounds were purified by column chromatography on silica gel.

Boc-L-Leu-L-Leu-Aib-D-Leu-D-Leu-Aib-OMe (1). Colorless crystals; mp 246–248 °C (recryst from MeCN/MeOH); $[\alpha]^{22}_{D}$ – 13.4 (*c* 0.5, MeOH); IR (in CDCl₃) 3370, 3280, 2956, 1780, 1657, 1530, 1374 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 6.0 Hz, 1H), 7.19 (br s, 1H), 7.15 (br s, 1H), 6.94 (br s, 1H), 5.05 (d, *J* = 5.2 Hz, 1H), 4.36 (m, 1H), 4.18 (m, 1H), 3.94 (m, 1H), 3.82 (m, 1H), 3.69 (s, 3H), 1.50–1.82 (m, 24H), 1.45 (s, 9H), 0.86–1.01 (m, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 175.8, 174.1, 173.7, 172.9, 172.4, 156.3, 80.9, 57.1, 56.2, 54.4, 54.0, 53.6, 52.6, 52.4, 39.8, 39.5, 38.3, 28.5, 27.5, 25.4, 25.2, 25.0, 24.4, 23.6, 23.4, 21.5, 21.3, 21.1; ESI(+)-MS *m*/*z* 778 [M + Na]⁺.

Boc-L-Leu-D-Leu-Aib-L-Leu-D-Leu-Aib-OMe (2). Colorless crystals; mp 162–164 °C (recryst from MeCN/MeOH); $[\alpha]^{22}_{D}$ – 7.2 (*c* 0.5, MeOH); IR (in CDCl₃) 3372, 3260, 2952, 1782, 1661, 1529, 1220 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (br s, 1H), 7.13 (br s, 1H), 7.11 (br s, 1H), 6.81 (br s, 1H), 6.56 (br s, 1H), 6.20 (br s, 1H), 4.33 (m, 1H), 4.00–4.19 (m, 3H), 3.72 (s, 3H), 1.47–1.81 (m, 24H), 1.45 (s, 9H), 0.90–0.99 (m, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 175.3, 175.0, 174.1, 173.3, 173.1, 175.1, 80.3, 57.2, 56.6, 53.5, 53.2, 52.9, 40.0, 39.6, 39.4, 39.2, 28.5, 26.9, 25.2, 25.0, 24.9, 24.0, 23.3, 23.2, 23.1, 22.1, 21.8, 21.7, 21.5; ESI(+)-MS *m/z* 778 [M + Na]⁺.

Boc-L-Leu-D-Leu-Aib-D-Leu-L-Leu-Aib-OMe (3). Colorless crystals; mp 176–178 °C (recryst from MeCN/MeOH); $[\alpha]^{22}_{D}$ – 2.5 (*c* 0.5, MeOH); IR (in CDCl₃) 3300, 2955, 1765, 1656, 1527, 1375 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (br s, 1H), 7.21 (br s, 1H), 7.13 (br s, 1H), 7.11 (br s, 1H), 6.81 (br s, 1H), 5.22 (br s, 1H), 4.22–4.29 (m, 2H), 4.03 (m, 1H), 3.83 (m, 1H), 3.69 (s, 3H), 1.43–1.91 (m, 33H), 0.88–1.00 (m, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 175.4, 175.1, 173.9, 173.8, 173.5, 156.2, 80.5, 57.4, 56.1, 55.3, 54.1, 53.6, 52.5, 52.4, 39.9, 39.8, 39.5, 28.5, 26.7, 25.6, 25.2, 25.1, 25.0, 24.9, 24.7, 24.1, 23.8, 23.4, 23.2, 23.0, 21.9, 21.8, 21.6, 21.1; ESI(+)-MS *m/z* 778 [M + Na]⁺.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Young Scientists (B) (21790018) from the Ministry of Education, Science, Sports, and Culture of Japan and the Kurata Memorial Hitachi Science and Technology Foundation.

Supporting Information Available: The crystallographic data and copies of the ¹H NMR and ¹³C NMR spectra of all new compounds are available free of charge via the Internet at http://pubs.acs.org.